APPLICATIONS OF SINUSOIDAL FUNCTIONS SUPPLEMENTARY PROBLEMS

2. Temperature readings were recorded every 2 h over a 24 h period on an early summer day as in the following table.

Time	Temperature (°C)
13:00	27.3
15:00	28.9
17:00	27.8
19:00	26.0
21:00	22.0
23:00	18.1
01:00	16.0
03:00	15.1
05:00	16.1
07:00	18.2
09:00	22.1
11:00	25.5
13:00	27.4

- (a) Plot the data on a graph and draw a smooth curve through the points.
- (b) Relate the graph to the general sine function

$$y = a \sin k(\theta + c) + d$$

- (c) Write the equation of the graph.
- (d) Use the equation to find the temperature at
 - (i) 04:00.
 - (ii) 16:00.
 - (iii) 20:30.
- 3. A ferris wheel has a diameter of 40 m and rotates once every 24 s.
- (a) Draw a graph to show a person's height above or below the centre of rotation starting at the lowest position.
- (b) Find an equation of the graph in (a).
- 4. During a spring tide on the Petitcodiac River, readings were taken and a range of 15 m was reported. Assuming the height of water with respect to mean sea level is a sine function,
- (a) draw a graph of the height of water over a 24 h period.
- (b) find an equation of the graph in (a).

- 5. A mass is suspended from a spring and allowed to bounce up and down. The distance from the high point to the low point is 20 cm and it takes 4 s to complete 5 cycles. The distance from the position of rest with respect to time is modelled by a sine function for the first few cycles.
- (a) Draw a graph of this sine function.
- (b) Write the equation that describes distance from the position of rest with respect to time.
- **6.** A water wheel with radius 2 m has 0.2 m submerged and rotates at 5 rev/min.
- (a) Draw a graph showing two complete rotations taking the surface of the water at the horizontal axis.
- (b) Write the equation of the sine function describing the height above the water taking the point at which the wheel touches the water at $t\,=\,0$.
- 7. A grandfather clock pendulum swings making one period every 2 s and an angle of 12° from the position of rest.
- (a) Express the angle between the arm and the position of rest as a function of time, assuming the relationship is a sine function.

 (b) Draw the graph of the above function for
- (b) Draw the graph of the above function for $0 \le t \le 6$, starting from the middle position.

Answers

1. (a)
$$y = 7 \sin \pi t$$

(b)
$$y = 170 \cos 120 \pi t$$

(c)
$$y = 4 \sin \frac{\pi}{2} t + 2$$

(d) y = 12
$$\sin \frac{\pi}{2}$$
 t

(e)
$$y = 12 \sin \pi t$$

(f)
$$y = \frac{3}{2} \sin 2\pi t + \frac{3}{2}$$

2. (c)
$$y = 6.9 \sin \frac{\pi}{12} (t + 4) + 22$$

3. (b)
$$y = -20 \cos \frac{\pi}{12} t$$
 or $y = 20 \sin \frac{\pi}{12} (t - 6)$

4. (b) y = 7.5 sin
$$\frac{\pi}{6}$$
 t (assuming a 12 h cycle)

5. (b)
$$y = 10 \sin \frac{5\pi}{2} t$$

6. (b)
$$y = -2 \sin (10\pi t + 1.12) + 1.8$$
 (taking $t = 0$ at the point at which the wheel enters the water) **7.** (a) $\theta = 12 \sin \pi t$