DOUBLE ANGLE FORMULAS

- Use a Double Angle Formula to rewrite each expression.
 - (a) $\cos 2(2x)$
- (b) $\sin 3x$
- (c) tan 6x

- (d) $\sin \frac{1}{2}x$
- (e) $\cos \frac{2}{3}x$
- (f) tan(-7x)
- 2. Express as a single sine or cosine function.
 - (a) $2 \sin 3\theta \cos 3\theta$
- (b) $6 \sin \theta \cos \theta$

(c) $\frac{1}{2}\sin\frac{\theta}{2}\cos\frac{\theta}{2}$

(d) $\cos^2 \frac{3\theta}{2} - \sin^2 \frac{3\theta}{2}$

(e) $1 - 2 \sin^2 \frac{\theta}{4}$

(f) $2\cos^2\left(\frac{7}{2}\theta\right)-1$

(g) $8 \sin^2 2\theta - 4$

- (h) $1 2 \sin^2\left(\frac{\pi}{4} \frac{x}{2}\right)$
- 3. If $\cos \theta = -\frac{4}{5}, \frac{\pi}{2} \le \theta \le \pi$, find the value of $\sin 2\theta$ and $\cos 2\theta$. Determine the quadrant of angle 2θ .
- **4.** If $\sin \theta = \frac{12}{13}$, $0 \le \theta \le \frac{\pi}{2}$, evaluate $\sin 2\theta$ and $\cos 2\theta$. Determine the quadrant of angle 2θ .
- 5. If $\sin \theta = \frac{2}{3}$, $0 \le \theta \le \frac{\pi}{2}$, find the value of $\sin 4\theta$.
- 6. If $\cos \theta = \frac{2}{5}, \frac{3\pi}{2} \le \theta \le 2\pi$, find the values of $\csc 2\theta$ and $\sec 2\theta$.
- 7. If $\tan a = \frac{1}{2}$, $0 \le a \le \frac{\pi}{2}$, find the value of $\tan 2a$.
- If $\tan a = 2$, $-2\pi \le a \le -\frac{3\pi}{2}$, evaluate $\tan 4a$.
- Develop formulas for
 - (a) $\sin 3\theta$ in terms of $\sin \theta$.
- (b) $\cos 3\theta$ in terms of $\cos \theta$.
- (c) $\tan 3\theta$ in terms of $\tan \theta$.
- (d) $\cos 4\theta$ in terms of $\cos \theta$.
- **10.** Find the exact values.
 - (a) $\sin 67\frac{1}{2}^{\circ}$
- (b) $\cos 112\frac{1}{2}^{\circ}$ (c) $\tan 22.5^{\circ}$
- (d) $\sin\left(-\frac{\pi}{9}\right)$ (e) $\cos\frac{\pi}{16}$ (f) $\tan 33.75^\circ$

Answers

- 1. (a) $\cos^2 2x \sin^2 2x$ or $1 2\sin^2 2x$ or $2\cos^2 2x - 1$ (b) $2\sin \frac{3}{2}x\cos \frac{3}{2}x$
 - (c) $\frac{2 \tan 3x}{1 \tan^2 3x}$ (d) $2 \sin \frac{1}{4}x \cos \frac{1}{4}x$
 - (e) $\cos^2 \frac{1}{3}x \sin^2 \frac{1}{3}x$ (f) $\frac{-2 \tan \frac{7}{2}x}{1 \tan^2 \frac{7}{2}x}$
- **2.** (a) $\sin 6\theta$ (b) $3 \sin 2\theta$ (c) $\frac{1}{4} \sin \theta$ (d) $\cos 3\theta$
 - (e) $\cos \frac{\theta}{2}$ (f) $\cos 7\theta$ (g) $-4 \cos 4\theta$ (h) $\sin x$
- 3. $\sin 2\theta = -\frac{24}{25}$, $\cos 2\theta = \frac{7}{25}$, 4th quadrant
- **4.** $\sin 2\theta = \frac{120}{169}$, $\cos 2\theta = -\frac{119}{169}$, 2nd quadrant
- 5. $\frac{8\sqrt{5}}{91}$
- **6.** $\csc 2\theta = \frac{25}{-4\sqrt{21}}$, $\sec 2\theta = \frac{25}{-17}$
- 7. $\frac{4}{3}$ 8. $\frac{24}{7}$
- **9.** (a) $3 \sin \theta 4 \sin^3 \theta$ (b) $4 \cos^3 \theta 3 \cos \theta$
 - (c) $\frac{3 \tan \theta \tan^3 \theta}{1 3 \tan^2 \theta}$
- (d) $8 \cos^4 \theta 8 \cos^2 \theta + 1$ **10.** (a) $\sqrt{\frac{\sqrt{2} + 1}{2\sqrt{2}}}$ (b) $-\sqrt{\frac{\sqrt{2} 1}{2\sqrt{2}}}$
 - (c) $-1 + \sqrt{2}$ (d) $-\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$
 - (e) $\sqrt{\frac{1+\sqrt{2}}{2\sqrt{2}}+1}$ (f) $\frac{-1+\sqrt{4+2\sqrt{2}}}{1+\sqrt{2}}$