The Product Rule

The Product Rule

If p(x) = f(x)g(x), then p'(x) = f'(x)g(x) + g'(x)f(x).

Proof:

Let
$$p(x) = f(x)g(x)$$
.

$$p'(x) = \lim_{h \to 0} \frac{p(x+h) - p(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \left\{ g(x+h) \left[\frac{f(x+h) - f(x)}{h} \right] + f(x) \left[\frac{g(x+h) - g(x)}{h} \right] \right\}$$

$$= \lim_{h \to 0} g(x+h) \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right] + \lim_{h \to 0} f(x) \lim_{h \to 0} \left[\frac{g(x+h) - g(x)}{h} \right]$$

$$= g(x) f'(x) + f(x)g'(x)$$

The Quotient Rule

The Quotient Rule for Derivatives Let $h(x) = \frac{f(x)}{g(x)}$. If both f'(x) and g'(x) exist, the derivative of h(x) is $h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}$, where $g(x) \neq 0$. In Leibniz notation, $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{\left[\frac{d}{dx} f(x) \right] g(x) - \left[\frac{d}{dx} g(x) \right] f(x)}{[g(x)]^2}$, $g(x) \neq 0$.

Proof:

Let $h(x) = \frac{f(x)}{g(x)}$ g(x)h(x) = f(x)

g'(x)h(x) + h'(x)g(x) = f'(x)

$$h'(x) = \frac{f'(x) - g'(x)h(x)}{g(x)} = \frac{f'(x) - g'(x)\frac{f(x)}{g(x)}}{g(x)}$$

Multiply both sides by g(x).

Differentiate both sides with respect to x.

Solve for
$$h'(x)$$
.

Substitute $h(x) = \frac{f(x)}{g(x)}$.

Multiply both the numerator and the denominator by g(x).

$$h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}$$