ADDITION AND SUBTRACTION FORMULAS

We know

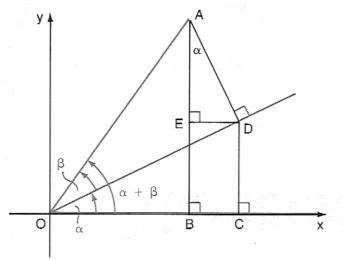
$$\sin \frac{\pi}{6} = \frac{1}{2} \quad \text{and} \quad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
$$\sin \frac{\pi}{6} + \sin \frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2}$$

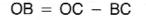
But

$$\sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \sin\frac{\pi}{2} = 1$$
$$\therefore \sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) \neq \sin\frac{\pi}{6} + \sin\frac{\pi}{3}$$

In this section we will derive formulas for the sine and cosine of the sum and difference of two angles.

To derive formulas for functions of $\alpha + \beta$, we place the angles α and β with reference to coordinate axes as shown. Taking A on the terminal arm of ($\alpha + \beta$) we draw the following perpendiculars — AD perpendicular to the terminal arm of α , AB \perp OX, DC \perp OX, and DE \perp AB.





But

$$\frac{OB}{OA} = \cos (\alpha + \beta) \Rightarrow OB = OA \cos (\alpha + \beta)$$
(1)
$$\frac{OC}{OD} = \cos \alpha \qquad \Rightarrow OC = OD \cos \alpha$$
(2)

3

In $\triangle AED$, $\angle EAD = \alpha$,

$$\therefore \frac{\text{ED}}{\text{AD}} = \sin \alpha \Rightarrow \text{ED} = \text{AD} \sin \alpha$$

Since BC = ED, BC = AD sin α

Substitute (1), (2), and (3) into OB = OC - BC,

 $OA \cos (\alpha + \beta) = OD \cos \alpha - AD \sin \alpha$

Divide by OA.

$$\cos (\alpha + \beta) = \frac{OD}{OA} \cos \alpha - \frac{AD}{OA} \sin \alpha$$

 $\frac{OD}{OA} = \cos \beta$ and $\frac{AD}{OA} = \sin \beta$

But

Consequently,

 $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

 $\cos(-\theta) = \cos\theta
\sin(-\theta) = -\sin\theta$

Replacing β with $-\beta$, we have

 $\cos (\alpha + (-\beta)) = \cos \alpha \cos (-\beta) - \sin \alpha \sin (-\beta)$

 $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

To develop formulas for sin $(\alpha - \beta)$ and sin $(\alpha + \beta)$ we replace α with 90° - α and β with - β . Then

 $\cos ((90^{\circ} - \alpha) - \beta) = \cos (90^{\circ} - \alpha) \cos \beta + \sin (90^{\circ} - \alpha) \sin \beta$ $\cos (90^{\circ} - (\alpha + \beta)) = \cos (90^{\circ} - \alpha) \cos \beta + \sin (90^{\circ} - \alpha) \sin \beta$ Using cos (90^{\circ} - \theta) = sin \theta and sin (90^{\circ} - \theta) = cos \theta above, we get

 $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Replacing β with $-\beta$, we get

 $\sin (\alpha - \beta) = \sin \alpha \cos (-\beta) + \cos \alpha \sin (-\beta)$

or

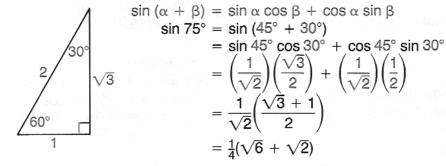
 $\sin (\alpha \ - \ \beta) \ = \ \sin \alpha \ \cos \beta \ - \ \cos \alpha \ \sin \beta$

These formulas are called the addition and subtraction formulas.

EXAMPLE 1. Find sin 75° without using tables.

SOLUTION:

Let $\alpha = 45^{\circ}$, $\beta = 30^{\circ}$, and $\alpha + \beta = 75^{\circ}$.



EXAMPLE 2. Find a formula for tan $(\alpha + \beta)$.

SOLUTION:

$$\tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}$$

Divide the numerator and denominator by $\cos \alpha \cos \beta$.

$$\tan (\alpha + \beta) = \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}$$

which reduces to

$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Replacing β with $(-\beta)$, we get

$$\tan(-\theta) = -\tan\theta$$

$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

We can also use the addition formulas to find the functions of twice an angle as in the following example.

EXAMPLE 3. Develop a formula for $\cos 2\alpha$.

SOLUTION:

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Replacing β with α , we have

 $\cos (\alpha + \alpha) = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

E=mc²