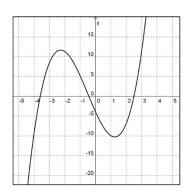
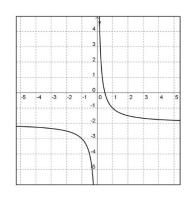
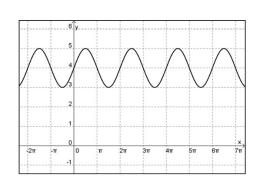

One-to-One Functions

Recall:


A **function** is a relation for which each element of the domain corresponds to exactly one element of the range. That is, for each *x*, there is exactly one *y*. These relations pass the vertical line test).




Furthermore, a function is **one-to-one** if we also have that each element of the range corresponds to exactly one element of the domain. That is, for each *y*, there is exactly one *x*. These relations pass the vertical line test and the horizontal line test.

Circle all of the **one-to-one functions**:

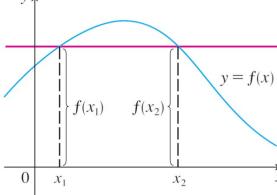
$$y = |x + 3|$$

$$f(x) = 4\sqrt{x+6} - 7$$

X	У
1	10
2	20
3	30
4	20
5	10

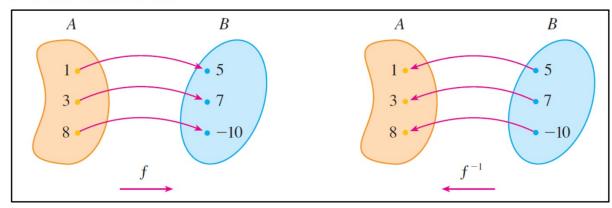
$$y = \frac{1}{x^2 + 5}$$

$$y = \pm \sqrt{x}$$


$$y = -2(5)^x + 7$$

DEFINITION One-to-One Function

A function f(x) is **one-to-one** on a domain D if $f(a) \neq f(b)$ whenever $a \neq b$.


In other words, a function is one-to-one if it never takes on the same value twice.

The function shown on the right is <u>not</u> a one-to-one function.

<u>Inverses</u>

Recall that the inverse of a function "undoes" or "reverses" the effect of the function.

$$x \longrightarrow f \longrightarrow f(x) \longrightarrow f^{-1} \longrightarrow x$$

$$f^{-1}(x) = y \iff f(y) = x$$

$$f^{-1}(f(x)) = x$$

$$f(f^{-1}(x)) = x$$

Determine the equation for the inverse of the following function.

$$f(x) = 2(x-5)^2 - 6$$

Graphing the Inverse Parametrically

The use of parametric equations allows us to easily graph a function and its inverse using technology.

Graphing y = f(x) and $y = f^{-1}(x)$ Parametrically

We can graph any function y = f(x) as

$$x_1 = t$$
, $y_1 = f(t)$.

Interchanging t and f(t) produces parametric equations for the inverse:

$$x_2 = f(t), \quad y_2 = t.$$

Consider the function $f(x) = x^3 - 4x^2 + 5x - 7$.

- 1) Express f(x) using parametric equations.
- 2) Express $f^{-1}(x)$ using parametric equations.
- 3) Use a calculator to graph f(x), $f^{-1}(x)$ and the line y = x.

Logarithms

1) Evaluate the following logarithms.

a)
$$\log_2 32 =$$

b)
$$\log_5 \frac{1}{125} =$$
 c) $\log_4 \sqrt[3]{16} =$

c)
$$\log_4 \sqrt[3]{16} =$$

2) Complete the following logarithm laws.

$$\log_a xy =$$

$$\log_a \frac{x}{y} =$$

$$\log_a x^y =$$

$$\log_a a^x =$$

$$a^{\log_a x} =$$

$$\log_a x = ----$$

Special Logarithms

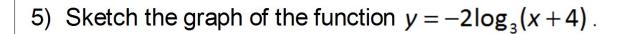
Common Logarithm

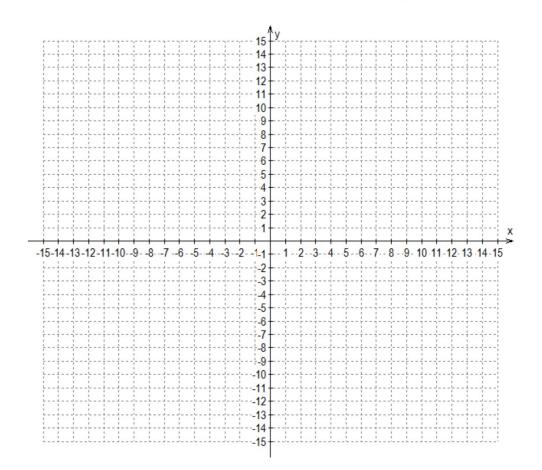
 $\log_{10} x =$

Natural Logarithm

 $\log_e x =$

Examples


1) Solve the equation $2(1.75)^x = 16$


2) Solve the equation $6(e)^{x+4}-81=130$

3)	Solve the following equation for <i>y</i> .
ln(y+8)-2x=3	

4) Solve the following equation.

$$e^{x}-2e^{-x}=-1$$

6) Evan invests \$1000 in an account that earns 5.25% compounded annually. How long will it take for the account to reach \$2500?