Sketch the graph of the function $f(x) = \frac{(x+1)^2}{x^2}$.

<u>Domain</u>

 $\{x \in \mathfrak{R} \mid x \neq 0\}$

Intercepts

x-intercept:

$$0 = \frac{(x+1)^2}{x^2}$$

$$f(0) = \frac{(0+1)^2}{0^2}$$

$$0 = (x+1)^2$$

$$x = -1$$
undefined
 \therefore no y-intercept

Asymptotes

Vertical: x = 0Horizontal: y = 1Oblique: none

Intervals of Increase/Decrease

For critical numbers,

$$f(x) = \frac{(x+1)^2}{x^2}$$
$$f'(x) = \frac{2(x+1)x^2 - 2x(x+1)^2}{x^4}$$
$$= \frac{2x(x+1)[x - (x+1)]}{x^4}$$
$$= \frac{-2x(x+1)}{x^4}$$
$$= \frac{-2(x+1)}{x^3}$$

$$0 = \frac{-2(x+1)}{x^3}$$

x = -1

Also, f'(x) is undefined for x = 0.

	<i>x</i> < -1	-1 < x < 0	x > 0
Sign of $f'(x)$	-	+	-
Increase/Decrease for $f(x)$			

Maximum and Minimum Points

Minimum at (-1, 0).

Concavity

$$f'(x) = \frac{-2(x+1)}{x^3}$$

$$f''(x) = \frac{-2x^3 - 3x^2(-2)(x+1)}{x^6}$$

$$= \frac{-2x^3 + 6x^2(x+1)}{x^6}$$

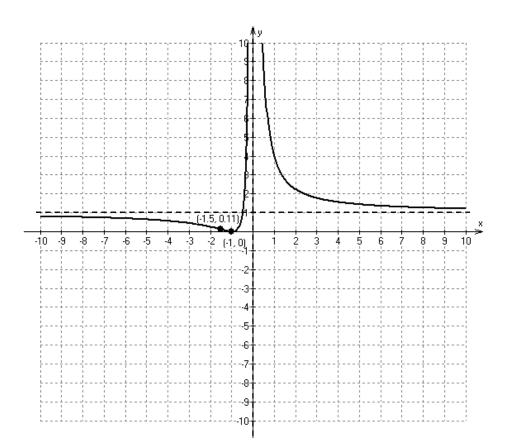
$$= \frac{-2x^2[x - 3(x+1)]}{x^6}$$

$$= \frac{-2x^2(-2x - 3)}{x^6}$$

$$= \frac{2(2x+3)}{x^4}$$

For possible inflection points,

$$0 = \frac{2(2x+3)}{x^4}$$


$$x = -1.5$$

Also, f''(x) is undefined for x = 0.

	<i>x</i> < -1.5	-1.5 < x < 0	<i>x</i> > 0
Sign of $f''(x)$	-	+	+
Concavity of			
f(x)	Down	Up	Up

Inflection Points

Inflection point at (-1.5, 0.11)

