Sketch the graph of the function $f(x)=\frac{(x+1)^{2}}{x^{2}}$.

Domain

$$
\{x \in \Re \mid x \neq 0\}
$$

Intercepts

$$
\begin{array}{lc}
x \text {-intercept: } & y \text {-intercept: } \\
0=\frac{(x+1)^{2}}{x^{2}} & f(0)=\frac{(0+1)^{2}}{0^{2}} \\
0=(x+1)^{2} & =\frac{1}{0} \\
x=-1 & \text { undefined }
\end{array}
$$

\therefore no y-intercept

Asymptotes

Vertical: $x=0$
Horizontal: $y=1$
Oblique: none

Intervals of Increase/Decrease

$$
\begin{aligned}
f(x) & =\frac{(x+1)^{2}}{x^{2}} \\
f^{\prime}(x) & =\frac{2(x+1) x^{2}-2 x(x+1)^{2}}{x^{4}} \\
& =\frac{2 x(x+1)[x-(x+1)]}{x^{4}} \\
& =\frac{-2 x(x+1)}{x^{4}} \\
& =\frac{-2(x+1)}{x^{3}}
\end{aligned}
$$

For critical numbers,

$$
\begin{aligned}
& 0=\frac{-2(x+1)}{x^{3}} \\
& x=-1
\end{aligned}
$$

Also, $f^{\prime}(x)$ is undefined for $x=0$.

Maximum and Minimum Points

Concavity

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-2(x+1)}{x^{3}} \\
f^{\prime \prime}(x) & =\frac{-2 x^{3}-3 x^{2}(-2)(x+1)}{x^{6}} \\
& =\frac{-2 x^{3}+6 x^{2}(x+1)}{x^{6}} \\
& =\frac{-2 x^{2}[x-3(x+1)]}{x^{6}} \\
& =\frac{-2 x^{2}(-2 x-3)}{x^{6}} \\
& =\frac{2(2 x+3)}{x^{4}}
\end{aligned}
$$

For possible inflection points,

$$
0=\frac{2(2 x+3)}{x^{4}}
$$

$$
x=-1.5
$$

Also, $f^{\prime \prime}(x)$ is undefined for $x=0$.

	$x<-1.5$	$-1.5<x<0$	$x>0$
Sign of $f^{\prime \prime}(x)$	-	+	+
Concavity of $f(x)$	Down	Up	Up

Inflection Points

Inflection point at $(-1.5,0.11)$

