Recall the following definition:

Definition of Increasing and Decreasing Functions

A function f(x) is **increasing** on the interval I(a < x < b), if $f(x_1) < f(x_2)$ for all pairs of numbers x_1 and x_2 in I such that $x_1 < x_2$.

A function f(x) is **decreasing** on the interval I(a < x < b), if $f(x_1) > f(x_2)$ for all pairs of numbers x_1 and x_2 in I such that $x_1 < x_2$.

Function f increases on an interval if the values of f(x) increase as x increases.

Using the Derivative...

Do you know where this is leading already? If a function is increasing, the tangent slope must be greater than 0. If a function is decreasing the tangent slope must be less than 0. How does this relate to the derivative?

Test for Increasing and Decreasing Functions

If f'(x) > 0 for all x in that interval, then f is *increasing* on the interval a < x < b. If f'(x) < 0 for all x in that interval, then f is *decreasing* on the interval a < x < b.

Examples

1) Find the intervals of increase and decrease of $g(x) = x^2 - 2x + 3$.

2) Find the intervals of increase and decrease of $f(x) = \frac{x^4}{4} - 2x^3 + \frac{5}{2}x^2 + 12x + 8$.

3) Find the intervals of increase and decrease of $f(x) = \frac{x}{x^2 + 1}$.