Recall the following definition:

Definition of Increasing and Decreasing Functions

A function $f(x)$ is increasing on the interval $I(a<x<b)$, if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all pairs of numbers x_{1} and x_{2} in I such that $x_{1}<x_{2}$.

Function f increases on an interval if the values of $f(x)$ increase as x increases.

A function $f(x)$ is decreasing on the interval $I(a<x<b)$, if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all pairs of numbers x_{1} and x_{2} in I such that $x_{1}<x_{2}$.

Function f decreases on an interval if the values of $f(x)$ decrease as x increases.

Using the Derivative...

Do you know where this is leading already? If a function is increasing, the tangent slope must be greater than 0 . If a function is decreasing the tangent slope must be less than 0 . How does this relate to the derivative?

Test for Increasing and Decreasing Functions

If $f^{\prime}(x)>0$ for all x in that interval, then f is increasing on the interval $a<x<b$.
If $f^{\prime}(x)<0$ for all x in that interval, then f is decreasing on the interval $a<x<b$.

Examples

1) Find the intervals of increase and decrease of $g(x)=x^{2}-2 x+3$.
2) Find the intervals of increase and decrease of $f(x)=\frac{x^{4}}{4}-2 x^{3}+\frac{5}{2} x^{2}+12 x+8$.
3) Find the intervals of increase and decrease of $f(x)=\frac{x}{x^{2}+1}$.
