TRIGONOMETRIC IDENTITIES SUPPLEMENTARY PROBLEMS

The following identities involve the reciprocal, quotient, and Pythagorean relationships. Prove each one. 1. $\sin x \tan x = \sec x - \cos x$ 2.) $\cos^4 x - \sin^4 x = 1 - 2 \sin^2 x$ 3. $\csc^2 x + \sec^2 x = \csc^2 x \sec^2 x$ 4. $\cos^2 x \cos^2 y + \sin^2 x \sin^2 y + \sin^2 x \cos^2 y + \sin^2 y \cos^2 x = 1$ 5. $\sec^2 x - \sec^2 y = \tan^2 x - \tan^2 y$ 6. $\frac{\tan x + \tan y}{\cot x + \cot y} = (\tan x)(\tan y)$ 7. $(\sec x - \cos x)(\csc x - \sin x) = \frac{\tan x}{1 + \tan^2 x}$ 8. $\cos^6 x + \sin^6 x = 1 - 3 \sin^2 x + 3 \sin^4 x$ 9. $\sec^6 x - \tan^6 x = 1 + 3 \tan^2 x \sec^2 x$ The following involve the addition and subtraction formulas. 10. 1 + cot x tan y = $\frac{\sin(x + y)}{\sin x \cos y}$ 11. $\cos(x + y)\cos y + \sin(x + y)\sin y = \cos x$ 12. $\sin x - \tan y \cos x = \frac{\sin(x - y)}{\cos y}$ 13. $\cos\left(\frac{3\pi}{4} + x\right) + \sin\left(\frac{3\pi}{4} - x\right) = 0$ 14. $\frac{\tan\left(\frac{\pi}{4}+x\right)-\tan\left(\frac{\pi}{4}-x\right)}{\tan\left(\frac{\pi}{4}+x\right)+\tan\left(\frac{\pi}{4}-x\right)} = 2\sin x \cos x$ 15. $\sin(x + y)\sin(x - y) = \cos^2 y - \cos^2 x$ 16. $\tan(x + y)\tan(x - y) = \frac{\sin^2 x - \sin^2 y}{\cos^2 x - \sin^2 y}$ 17. $\frac{\tan(x - y) + \tan y}{1 - \tan(x - y)\tan y} = \tan x$ 18. $\sin 5x = \sin x (\cos^2 2x - \sin^2 2x) + 2 \cos x \cos 2x \sin 2x$ The following involve related and co-related angles.

19.
$$\sin\left(\frac{\pi}{2} - x\right)\cot\left(\frac{\pi}{2} + x\right) = -\sin x$$

20. $\cos(-x) + \cos(\pi - x) = \cos(\pi + x) + \cos x$

21.
$$\frac{\sin(\pi - x)}{\tan(\pi + x)} \frac{\cot(\frac{\pi}{2} - x)}{\tan(\frac{\pi}{2} + x)} \frac{\cos(2\pi - x)}{\sin(-x)} = \sin x$$

22.
$$\frac{\sin(-x)}{\sin(\pi + x)} - \frac{\tan(\frac{\pi}{2} + x)}{\cot x} + \frac{\cos x}{\sin(\frac{\pi}{2} + x)} = 3$$

23.
$$\frac{\csc(\pi - x)}{\sec(\pi + x)} \frac{\cos(-x)}{\cos(\frac{\pi}{2} + x)} = \cot^2 x$$

24.
$$\frac{\cos(\frac{\pi}{2} + x)\sec(-x)\tan(\pi - x)}{\sec(2\pi + x)\sin(\pi + x)\cot(\frac{\pi}{2} - x)} = -1$$

25.
$$\frac{\sin(\pi - x)\cos(\pi + x)\tan(2\pi - x)}{\sec(\frac{\pi}{2} + x)\csc(\frac{3\pi}{2} - x)\cot(\frac{3\pi}{2} + x)} = \sin^4 x - \sin^2 x$$

The following involve the double angle formulas.
26.
$$\frac{\sin 2x}{1 + \cos 2x} = \tan x$$

27.
$$\frac{1 + \cos x}{\sin x} = \cot \frac{x}{2}$$

28.
$$2 \csc 2x = \sec x \csc x$$

29.
$$2 \cot 2x = \cot x - \tan x$$

30.
$$\frac{\cos 2x}{1 + \sin 2x} = \tan(\frac{\pi}{4} - x)$$

31.
$$\frac{\cos x - \sin x}{\cos x + \sin x} = \sec 2x - \tan 2x$$

32.
$$\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x$$

33.
$$\cos^6 x - \sin^6 x = \cos 2x(1 - \frac{1}{4}\sin^2 2x)$$

34.
$$4(\cos^6 x + \sin^6 x) = 1 + 3\cos^2 2x$$

35.
$$\sec x - \tan x = \tan(\frac{\pi}{4} - \frac{x}{2})$$

36.
$$\frac{\sin 2x}{1 + \cos 2x} \frac{\cos x}{1 + \cos x} = \tan \frac{x}{2}$$

The following involve a variety of formulas and identities.
37.
$$\sin^2 x + \cos^4 x = \cos^2 x + \sin^4 x$$

38. $\tan x - \cot x = (\tan x - 1)(\cot x + 1)$
39. $\cos x = \sin x \tan^2 x \cot^3 x$
40. $(\sin x + \cos x)(\tan x + \cot x) = \sec x + \csc x$
41. $\sin^4 x + \cos^4 x = \sin^2 x(\csc^2 x - 2\cos^2 x)$
42. $\sin^3 x + \cos^3 x = (1 - \sin x \cos x)(\sin x + \cos x)$
43. $\cos\left(\frac{\pi}{12} - x\right)\sec\frac{\pi}{12} - \sin\left(\frac{\pi}{12} - x\right)\csc\frac{\pi}{12} = 4\sin x$
44. $\tan(x - y) + \tan(y - z) = \frac{\sec^2 y (\tan x - \tan z)}{(1 + \tan x \tan y)(1 + \tan y \tan z)}$
45. $\sin 8x = 8\sin x \cos x \cos 2x \cos 4x$
46. $\sin x = 1 - 2\sin^2\left(\frac{\pi}{4} - \frac{x}{2}\right)$
47. $\sin(x + y) + \sin(x - y) = 2\sin x \cos y$
48. $\frac{\sin(x - y)}{\sin x \sin y} + \frac{\sin(y - z)}{\sin y \sin z} + \frac{\sin(z - x)}{\sin z \sin x} = 0$
49. $\tan x + \tan(\pi - x) + \cot\left(\frac{\pi}{2} + x\right) = \tan(2\pi - x)$
50. $\sin\left(\frac{\pi}{2} + x\right)\cos(\pi - x)\cot\left(\frac{3\pi}{2} + x\right)$
 $= \sin\left(\frac{\pi}{2} - x\right)\sin\left(\frac{3\pi}{2} - x\right)\cot\left(\frac{\pi}{2} + x\right)$
51. $\tan\left(\frac{\pi}{2} - x\right) - \cot\left(\frac{3\pi}{2} - x\right) + \tan(2\pi - x) - \cot(\pi - x)$
 $= \frac{4 - 2\sec^2 x}{\tan x}$
52. $\tan(x + y + z) = \frac{\tan x + \tan y + \tan z - \tan x \tan y \tan z}{1 - \tan x \tan y \tan z}$
53. $\csc^2\left(\frac{\pi}{2} - x\right) = 1 + \sin^2 x \csc^2\left(\frac{\pi}{2} - x\right)$
54. $\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = 2\sec 2x$
55. $\frac{1 - \sin 2x}{\cos 2x} = \frac{\cos 2x}{\cos 2x} = \tan x$