1. Determine the points at which f'(x) = 0 for each of the following functions:

a.
$$f(x) = x^3 + 6x^2 + 1$$

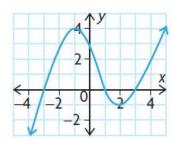
c.
$$f(x) = (2x - 1)^2(x^2 - 9)$$

b.
$$f(x) = \sqrt{x^2 + 4}$$

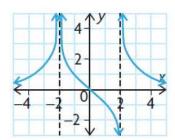
d.
$$f(x) = \frac{5x}{x^2 + 1}$$

- 2. Explain how you would determine when a function is increasing or decreasing.
- 3. For each of the following graphs, state
 - i. the intervals where the function is increasing
 - ii. the intervals where the function is decreasing
 - iii. the points where the tangent to the function is horizontal

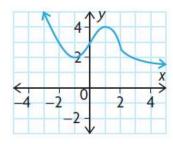
a.



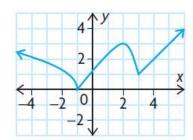
C.



b.



d.



4. Use a calculator to graph each of the following functions. Inspect the graph to estimate where the function is increasing and where it is decreasing. Verify your estimates with algebraic solutions.

a.
$$f(x) = x^3 + 3x^2 + 1$$

d.
$$f(x) = \frac{x-1}{x^2+3}$$

b.
$$f(x) = x^5 - 5x^4 + 100$$

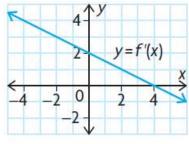
e.
$$f(x) = 3x^4 + 4x^3 - 12x^2$$

$$c. f(x) = x + \frac{1}{x}$$

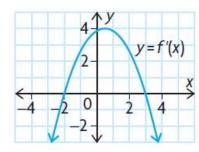
f.
$$f(x) = x^4 + x^2 - 1$$

- 5. Suppose that f is a differentiable function with the derivative f'(x) = (x 1)(x + 2)(x + 3). Determine the values of x for which the function f is increasing and the values of x for which the function is decreasing.
- 6. Sketch a graph of a function that is differentiable on the interval $-2 \le x \le 5$ and that satisfies the following conditions:
 - The graph of f passes through the points (-1, 0) and (2, 5).
 - The function f is decreasing on -2 < x < -1, increasing on -1 < x < 2, and decreasing again on 2 < x < 5.
- 7. Find constants a, b, and c such that the graph of $f(x) = x^3 + ax^2 + bx + c$ will increase to the point (-3, 18), decrease to the point (1, -14), and then continue increasing.
- 8. Sketch a graph of a function *f* that is differentiable and that satisfies the following conditions:
 - f'(x) > 0, when x < -5
 - f'(x) < 0, when -5 < x < 1 and when x > 1
 - f'(-5) = 0 and f'(1) = 0
 - f(-5) = 6 and f(1) = 2
- 9. Each of the following graphs represents the derivative function f'(x) of a function f(x). Determine
 - i. the intervals where f(x) is increasing
 - ii. the intervals where f(x) is decreasing
 - iii. the *x*-coordinate for all local extrema of f(x)

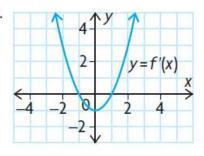
Assuming that f(0) = 2, make a rough sketch of the graph of each function.



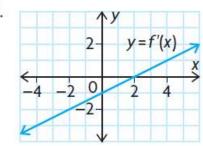
C.



b.



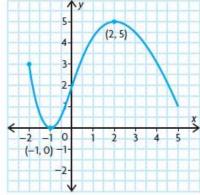
d.



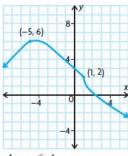
- 10. Use the derivative to show that the graph of the quadratic function $f(x) = ax^2 + bx + c$, a > 0, is decreasing on the interval $x < -\frac{b}{2a}$ and increasing on the interval $x > -\frac{b}{2a}$.
- 11. For $f(x) = x^4 32x + 4$, find where f'(x) = 0, the intervals on which the function increases and decreases, and all the local extrema. Use graphing technology to verify your results.
- 12. Sketch a graph of the function g that is differentiable on the interval $-2 \le x \le 5$, decreases on 0 < x < 3, and increases elsewhere on the domain. The absolute maximum of g is 7, and the absolute minimum is -3. The graph of g has local extrema at (0, 4) and (3, -1).
- 13. Let f and g be continuous and differentiable functions on the interval $a \le x \le b$. If f and g are both increasing on $a \le x \le b$, and if f(x) > 0 and g(x) > 0 on $a \le x \le b$, show that the product fg is also increasing on $a \le x \le b$.
- 14. Let f and g be continuous and differentiable functions on the interval $a \le x \le b$. If f and g are both increasing on $a \le x \le b$, and if f(x) < 0 and g(x) < 0 on $a \le x \le b$, is the product fg increasing on $a \le x \le b$, decreasing, or neither?

Answers

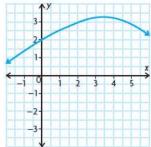
- 1. a. (0, 1), (-4, 33)
 - b. (0, 2)
 - c. $\left(\frac{1}{2}, 0\right)$, (2.25, -48.2), (-2, -125)
- 2. A function is increasing when f'(x) > 0 and is decreasing when f'(x) < 0.
- 3. a. i. x < -1, x > 2
 - ii. -1 < x < 2
 - iii. (-1, 4), (2, -1)
 - **b.** i. $-1 \le x \le 1$
 - ii. x < -1, x > 1
 - iii. (-1, 2), (2, 4)
 - c. i. x < -2
 - ii. $-2 \le x \le 2, 2 \le x$
 - iii. none
 - **d.** i. $-1 \le x \le 2, 3 \le x$
 - ii. x < -1, 2 < x < 3
 - iii. (2, 3)
- **4.** a. increasing: x < -2, x > 0; decreasing: $-2 \le x \le 0$
 - **b.** increasing: x < 0, x > 4;
 - decreasing: 0 < x < 4
 - c. increasing: x < -1, x > 1;
 - decreasing: $-1 \le x \le 0$, 0 < x < 1
 - **d.** increasing: $-1 \le x \le 3$;
 - decreasing: x < -1, x > 3
 - e. increasing: -2 < x < 0, x > 1; decreasing: x < -2, 0 < x < 1
 - **f.** increasing: x > 0;
 - - decreasing: x < 0
- 5. increasing: -3 < x < -2, x > 1;
 - decreasing: x < -3, -2 < x < 1



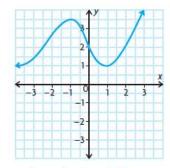
7.
$$a = 3, b = -9, c = -9$$



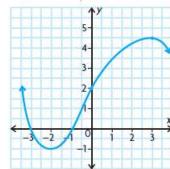
- 9. a. i. x < 4
 - ii. x > 4
 - iii. x = 4



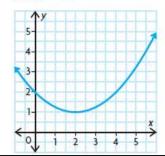
- **b.** i. x < -1, x > 1
 - ii. $-1 \le x \le 1$
 - iii. x = -1, x = 1



- i. -2 < x < 3
 - ii. x < -2, x > 3
 - iii. x = -2, x = 3



- d. i. x > 2
 - ii. x < 2
 - iii. x = 2



10. $f(x) = ax^2 + bx + c$ f'(x) = 2ax + b

Let
$$f'(x) = 0$$
, then $x = \frac{-b}{2a}$.

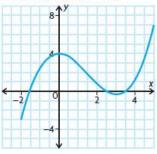
If $x < \frac{-b}{2a}$, f'(x) < 0, therefore the function is decreasing.

If $x > \frac{-b}{2a}$, f'(x) > 0, therefore the function is increasing.

- **11.** f'(x) = 0 for x = 2,
 - increasing: x > 2,
 - decreasing: x < 2,

local minimum: (2, -44)

12.



13. Let y = f(x) and u = g(x).

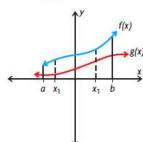
Let x_1 and x_2 be any two values in the interval $a \le x \le b$ so that $x_1 < x_2$. Since $x_1 < x_2$, both functions are increasing:

 $f(x_2) > f(x_1)$ (1)

$$g(x_2) > g(x_1) \tag{2}$$

- $yu = f(x) \cdot g(x)$
- $(1) \times (2)$ results in
- $f(x_2) \cdot g(x_2) > f(x_1)g(x_1)$

The function yu or $f(x) \cdot g(x)$ is strictly increasing.



14. strictly decreasing