Practice Problems for Finding Unknown Coefficients

1. Let $f(x)=a x^{3}+b x^{2}+c x+d$. Determine the vales of a, b, c, and d so that $f(x)$ critical points at $x=2$ and $x=-1, f(0)=1$, and $f^{\prime}(0)=6$.
2. The function $f(x)=\frac{1}{3} x^{3}+b x^{2}+c$ has a critical point at $(3,2)$. Determine the constants b and c.
3. Let $f^{\prime}(x)=a x^{2}+b x+c$. Determine the values for a, b, and c so that $f(x)$ has a local maximum at $x=3$, a local minimum at $x=-5$, and $f^{\prime \prime}(3)=-8$.
4. Let $f(x)=a x^{3}+b x^{2}+c x+1$. Determine the values of a, b, and c so that $f(x)$ has a point of inflection at $x=2$, a local minimum at $x=-2$, and $f(1)=2$.

Answers

1. $a=-1, b=\frac{3}{2}, c=6, d=1$
2. $b=-\frac{3}{2}, c=6.5$
3. $a=-1, b=-2, c=15$
4. $a=-\frac{1}{41}, b=\frac{6}{41}, c=\frac{36}{41}$
